3.308 \(\int \frac{x^4 \sqrt{1+2 x^2+2 x^4}}{3+2 x^2} \, dx\)

Optimal. Leaf size=424 \[ -\frac{1}{60} \left (13-6 x^2\right ) \sqrt{2 x^4+2 x^2+1} x+\frac{109 \sqrt{2 x^4+2 x^2+1} x}{60 \sqrt{2} \left (\sqrt{2} x^2+1\right )}+\frac{3}{16} \sqrt{15} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )+\frac{\left (263 \sqrt{2}-70\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{60\ 2^{3/4} \left (3 \sqrt{2}-2\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{109 \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{60\ 2^{3/4} \sqrt{2 x^4+2 x^2+1}}+\frac{15 \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{16\ 2^{3/4} \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}} \]

[Out]

-(x*(13 - 6*x^2)*Sqrt[1 + 2*x^2 + 2*x^4])/60 + (109*x*Sqrt[1 + 2*x^2 + 2*x^4])/(
60*Sqrt[2]*(1 + Sqrt[2]*x^2)) + (3*Sqrt[15]*ArcTan[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2
+ 2*x^4]])/16 - (109*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2
)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(60*2^(3/4)*Sqrt[1 + 2*x^2
 + 2*x^4]) + ((-70 + 263*Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1
+ Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(60*2^(3/4)*(
-2 + 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4]) + (15*(3 + Sqrt[2])*(1 + Sqrt[2]*x^2)*S
qrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24, 2*
ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(16*2^(3/4)*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2
+ 2*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.996114, antiderivative size = 632, normalized size of antiderivative = 1.49, number of steps used = 16, number of rules used = 8, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.276 \[ \frac{1}{30} \left (3 x^2+1\right ) \sqrt{2 x^4+2 x^2+1} x+\frac{109 \sqrt{2 x^4+2 x^2+1} x}{60 \sqrt{2} \left (\sqrt{2} x^2+1\right )}-\frac{1}{4} \sqrt{2 x^4+2 x^2+1} x+\frac{3}{16} \sqrt{15} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )-\frac{\left (1+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{4\ 2^{3/4} \sqrt{2 x^4+2 x^2+1}}-\frac{139 \left (1-\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{240 \sqrt [4]{2} \sqrt{2 x^4+2 x^2+1}}-\frac{45 \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{8\ 2^{3/4} \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{109 \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{60\ 2^{3/4} \sqrt{2 x^4+2 x^2+1}}+\frac{15 \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{16\ 2^{3/4} \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}} \]

Warning: Unable to verify antiderivative.

[In]  Int[(x^4*Sqrt[1 + 2*x^2 + 2*x^4])/(3 + 2*x^2),x]

[Out]

-(x*Sqrt[1 + 2*x^2 + 2*x^4])/4 + (x*(1 + 3*x^2)*Sqrt[1 + 2*x^2 + 2*x^4])/30 + (1
09*x*Sqrt[1 + 2*x^2 + 2*x^4])/(60*Sqrt[2]*(1 + Sqrt[2]*x^2)) + (3*Sqrt[15]*ArcTa
n[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/16 - (109*(1 + Sqrt[2]*x^2)*Sqrt[(1 +
2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])
/4])/(60*2^(3/4)*Sqrt[1 + 2*x^2 + 2*x^4]) - (45*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^
2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])
/(8*2^(3/4)*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4]) - (139*(1 - Sqrt[2])*(1 + S
qrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(
1/4)*x], (2 - Sqrt[2])/4])/(240*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) - ((1 + Sqrt[2]
)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*Ar
cTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(4*2^(3/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + (15*(3
+ Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*Ellip
ticPi[(12 - 11*Sqrt[2])/24, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(16*2^(3/4)*(
2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 80.4071, size = 571, normalized size = 1.35 \[ \frac{x \left (6 x^{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}}{60} - \frac{x \sqrt{2 x^{4} + 2 x^{2} + 1}}{4} + \frac{109 \sqrt{2} x \sqrt{2 x^{4} + 2 x^{2} + 1}}{120 \left (\sqrt{2} x^{2} + 1\right )} - \frac{109 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) E\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{120 \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{\sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (2 + 2 \sqrt{2}\right ) \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{16 \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{139 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (- 2 \sqrt{2} + 4\right ) \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{960 \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{45 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{16 \left (- 3 \sqrt{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{15 \cdot 2^{\frac{3}{4}} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (2 + 3 \sqrt{2}\right ) \left (\sqrt{2} x^{2} + 1\right ) \Pi \left (- \frac{11 \sqrt{2}}{24} + \frac{1}{2}; 2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{64 \left (- 3 \sqrt{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{3 \sqrt{15} \operatorname{atan}{\left (\frac{\sqrt{15} x}{3 \sqrt{2 x^{4} + 2 x^{2} + 1}} \right )}}{16} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**4*(2*x**4+2*x**2+1)**(1/2)/(2*x**2+3),x)

[Out]

x*(6*x**2 + 2)*sqrt(2*x**4 + 2*x**2 + 1)/60 - x*sqrt(2*x**4 + 2*x**2 + 1)/4 + 10
9*sqrt(2)*x*sqrt(2*x**4 + 2*x**2 + 1)/(120*(sqrt(2)*x**2 + 1)) - 109*2**(1/4)*sq
rt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(sqrt(2)*x**2 + 1)*elliptic_e(2*
atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(120*sqrt(2*x**4 + 2*x**2 + 1)) - 2**(1/4)*s
qrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(2 + 2*sqrt(2))*(sqrt(2)*x**2 +
 1)*elliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(16*sqrt(2*x**4 + 2*x**2 +
1)) + 139*2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(-2*sqrt(2)
 + 4)*(sqrt(2)*x**2 + 1)*elliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(960*s
qrt(2*x**4 + 2*x**2 + 1)) - 45*2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2
 + 1)**2)*(sqrt(2)*x**2 + 1)*elliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(1
6*(-3*sqrt(2) + 2)*sqrt(2*x**4 + 2*x**2 + 1)) + 15*2**(3/4)*sqrt((2*x**4 + 2*x**
2 + 1)/(sqrt(2)*x**2 + 1)**2)*(2 + 3*sqrt(2))*(sqrt(2)*x**2 + 1)*elliptic_pi(-11
*sqrt(2)/24 + 1/2, 2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(64*(-3*sqrt(2) + 2)*sq
rt(2*x**4 + 2*x**2 + 1)) + 3*sqrt(15)*atan(sqrt(15)*x/(3*sqrt(2*x**4 + 2*x**2 +
1)))/16

_______________________________________________________________________________________

Mathematica [C]  time = 0.214539, size = 209, normalized size = 0.49 \[ \frac{48 x^7-56 x^5-80 x^3-(199-417 i) \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} F\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )-218 i \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} E\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+225 (1-i)^{3/2} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} \Pi \left (\frac{1}{3}+\frac{i}{3};\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )-52 x}{240 \sqrt{2 x^4+2 x^2+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^4*Sqrt[1 + 2*x^2 + 2*x^4])/(3 + 2*x^2),x]

[Out]

(-52*x - 80*x^3 - 56*x^5 + 48*x^7 - (218*I)*Sqrt[1 - I]*Sqrt[1 + (1 - I)*x^2]*Sq
rt[1 + (1 + I)*x^2]*EllipticE[I*ArcSinh[Sqrt[1 - I]*x], I] - (199 - 417*I)*Sqrt[
1 - I]*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticF[I*ArcSinh[Sqrt[1 -
I]*x], I] + 225*(1 - I)^(3/2)*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*Ellipt
icPi[1/3 + I/3, I*ArcSinh[Sqrt[1 - I]*x], I])/(240*Sqrt[1 + 2*x^2 + 2*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.093, size = 528, normalized size = 1.3 \[ -{\frac{13\,x}{60}\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}-{\frac{8\,{\it EllipticF} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{15\,\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{ \left ({\frac{13}{60}}-{\frac{13\,i}{60}} \right ) \left ({\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) -{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) \right ) }{\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{{x}^{3}}{10}\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}-{\frac{9\,{\it EllipticF} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{4\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{{\frac{9\,i}{8}}{\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{9\,{\it EllipticE} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{8\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{{\frac{9\,i}{8}}{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{15}{8\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\it EllipticPi} \left ( x\sqrt{-1+i},{\frac{1}{3}}+{\frac{i}{3}},{\frac{\sqrt{-1-i}}{\sqrt{-1+i}}} \right ){\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^4*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x)

[Out]

-13/60*x*(2*x^4+2*x^2+1)^(1/2)-8/15/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^
2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2
))+(13/60-13/60*I)/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2
*x^2+1)^(1/2)*(EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-EllipticE(x*(
-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2)))+1/10*x^3*(2*x^4+2*x^2+1)^(1/2)-9/4/(-1+I
)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF
(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+9/8*I/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/
2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2
)+1/2*I*2^(1/2))+9/8/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^
4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-9/8*I/(-1+I
)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE
(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+15/8/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2
)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticPi(x*(-1+I)^(1/2),1/3+1/3*I,
(-1-I)^(1/2)/(-1+I)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1} x^{4}}{2 \, x^{2} + 3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3),x, algorithm="maxima")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1} x^{4}}{2 \, x^{2} + 3}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3),x, algorithm="fricas")

[Out]

integral(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{4} \sqrt{2 x^{4} + 2 x^{2} + 1}}{2 x^{2} + 3}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**4*(2*x**4+2*x**2+1)**(1/2)/(2*x**2+3),x)

[Out]

Integral(x**4*sqrt(2*x**4 + 2*x**2 + 1)/(2*x**2 + 3), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1} x^{4}}{2 \, x^{2} + 3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3),x, algorithm="giac")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3), x)